Analysis of Surface Crack Growth under Rolling Contact Fatigue

نویسندگان

  • D. Canadinc
  • H. Sehitoglu
  • K. Verzal
چکیده

Understanding the fatigue crack growth phenomenon in railheads requires a study of driving forces such as the crack tip opening and sliding displacements, under repeated rolling contact. Finite element simulations, allowing elastic-plastic deformation, and mixed-mode crack growth laws were utilized to demonstrate that the fatigue crack growth rates display a minimum after a finite amount of crack advance. These results have implications in designing strategies for optimum grinding or wear rates to limit fatigue crack growth, and thereby prolong rail life. During the simulations, the crack was allowed to advance, permitting residual deformations and stresses to be retained from cycle to cycle. The opening and closure of crack surfaces, under forward and reverse slip and stick conditions were monitored. Normal pressures of 1500 MPa and 2000 MPa, along with shear traction ratios in the range of -0.4 to 0.4 were investigated for a varying crack size of 3 to 15 mm. An interesting finding was that the crack tip opening displacements decreased while the crack tip sliding displacements increased with increasing crack length. * To whom all correspondence should be addressed. E-mail: [email protected]. † Current Affiliation: Koc University, Department of Mechanical Engineering, Istanbul, Turkey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Behavior of the Aluminum Alloy 2024 Under Fretting Conditions

The initial stage of fretting fatigue crack growth is significantly influenced by tangential force induced by fretting action along the contact surface where a mixed-mode crack growth is involved. Fretting crack behavior of aluminum alloy 2024 was studied, taking into account the problem of contact asperities. Finite element was used for the determination of the stress field near the contact su...

متن کامل

Residual Stress Evaluation of Railway Rails

Various stresses add to the railway rails and accumulate fatigue damage due to daily use. Fracture mechanics clarification concerning the growth behavior of cracks is needed, in order to decide the inspection period and the cycle [1], . Though the crack progression and influence of residual stress on fatigue strength has been researched [3] for many years, they are not clear now. The aims of th...

متن کامل

Predicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading

In this paper, a two-dimensional computational model is proposed for predicting the initiation position and propagation path of subsurface crack of spur gear tooth flank. In order to simulate the contact of teeth, an equivalent model of two contacting cylinders is used. The problem is assumed to be under linear elastic fracture mechanic conditions and finite element method is used for numerical...

متن کامل

FATIGUE BEHAVIOUR OFA ROLLED AZ31 MAGNESIUM ALLOYS PREPARED BY EPAND BB CONDITIONS

Abstract: Rotating bending fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in laboratory air at ambient temperature. Fatigue strength and characteristic was evaluated and fracture mechanism was discussed on the basis fracture surface analysis. Electrical polishing (EP) as well as deep rolling (ball burnishing (BB)) U-notched specimens were performed on ...

متن کامل

Contact Fatigue

CONTACT FATIGUE is a surface-pitting-type failure commonly found in ball or roller bearings. This type of failure can also be found in gears, cams, valves, rails, and gear couplings. Contact fatigue has been identified in metal alloys (both ferrous and nonferrous) and in ceramics and cermets. Contact fatigue differs from classic structural fatigue (bending or torsional) in that it results from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007